The Desktop is Dead! Long live the Desktop!

So it seems like desktop applications are dead, or the were… I don’t know. I’d rather a full native app instead of a web-based app. EVERYWHERE! And that includes desktop apps. Electron.js based apps are fast to develop, easy to maintain, and cross platform, but they s*ck$. They are hungry for resources, CPU and memory, as they are based on the always-hungry (Chrome) browser.

So, a few solutions come to scene in the last few years. The most famous I believe it’s Flutter, it covers mobile and desktop, but also web. But it’s not the only one! JetBrains released Compose for Desktop, which targets macOS, Linux and Windows. It’s a port of Android’s Compose for Desktop, what makes this a great alternative for multiplatform apps. If we add Kotlin Multiplatform to this equation for creating Business Logic that can also run on iOS, Kotlin seems like a great starting point for fully native desktop and mobile apps.

Web-based multiplatfom solutions are hungry for resources. Native apps are more resource-efficient, load faster, work better in offline mode.

Similar to the previous article, I will explore the development process of a Linux app using Kotlin Compose, and also will run that app on macOS. Take into consideration that Kotlin Compose is yet an experimental feature.

System Requirements

The only requirement for developing apps using Compose for Desktop, is Kotlin 1.4.20 or newer. A Java Runtime Environment is of course required for this JVM language, and even Kotlin can run on JRE 7 (for example) it’s recommended to use an as new as possible Java Virtual Machine, for example JVM 11 or 13.

At the time of this post there is a bug in JDK 14 that doesn’t allow to generate a Debian package in Linux. If you are using Linux, please switch to either JDK 11 (LTS) or JDK 15.

IntelliJ IDE, made by JetBrains, supports creating Kotlin Compose apps out-of-the-box. Two flavours are available:

  • Desktop
  • Multiplatform

Desktop targets macOS, Linux and Windows using Compose, while Multiplatform adds Android support.

In this tutorial, a desktop-only app will be created.

Getting Started

When the IDE finished starting up the project, all dependencies are downloaded and the index is updates, a single Main.kt file will be present in your source folder. The entry point of the app is a main function that returns a Window.

A simple Compose app may look like

fun main() = Window(title = "Hello, Compose!") {
    MaterialTheme {
            horizontalAlignment = Alignment.CenterHorizontally,
            verticalArrangement = Arrangement.Center,
            modifier = Modifier.padding(32.dp).fillMaxWidth().fillMaxHeight()
        ) {
            Card {
                var expanded by remember { mutableStateOf(false) }
                    horizontalAlignment = Alignment.CenterHorizontally,
                    verticalArrangement = Arrangement.Center,
                    modifier = Modifier.clickable { expanded = !expanded }) {
                        bitmap = imageResource("drawable/kotlin.png"),
                        alignment = Alignment.Center,
                        modifier = Modifier.padding(32.dp).preferredWidth(128.dp).preferredHeight(128.dp)
                    AnimatedVisibility(expanded) {
                        Column {
                                text = "Hello, Compose!",
                                style = MaterialTheme.typography.h2
Native Kotlin Compose app running on macOS


Packaging an application can be a little tricky, you can run the app everywhere using a gradle o maven task, but you can only create a package, a distributable installation file, in the same architecture of the target package. In other words, there is no “cross packaging”. You cannot create a Debian compatible -deb- file from macOS. So, in order to cover all the available flavours, you will need access to Windows, macOS and Debian.

Which, if you have a macOS machine, it’s pretty easy to archive using VirtualBox or any other Virtual Machine.

The package task generates a distributable file for the current platform. There are other related tasks, but I couldn’t successfully run any of the on a platform different that the current on.

$ ./gradlew package

> Task :packageDmg
WARNING: Using incubator modules: jdk.incubator.jpackage
The distribution is written to build/compose/binaries/main/dmg/DesktopApp-1.0.0.dmg

5 actionable tasks: 3 executed, 2 up-to-date
  • msi (Microsoft Installer) for Windows
  • deb (Debian package) for Debian/Ubuntu compatible
  • dmg (Disk Image File) for macOS
Inside generated DMG file


The very simple app that you see in this post needs 80MB of disk space, and generates a DMG file of nearly 42MB. Where only 1MB belongs to this application (assets and compiled code). The rest is just Kotlin libraries (coroutines, stdlib, material design, etc).

kimi@Kimis-Mac-mini /A/D/C/app> ls -la
total 37024
drwxr-xr-x  38 kimi  admin     1216 Mar 23 14:34 ./
drwxr-xr-x   8 kimi  admin      256 Mar 23 14:34 ../
-rw-r--r--   1 kimi  admin   104427 Mar 23 14:34 DesktopApp-1.0.0.jar
-rw-r--r--   1 kimi  admin     1522 Mar 23 14:34 DesktopApp.cfg
drwxr-xr-x   3 kimi  admin       96 Mar 23 14:34 META-INF/
-rw-r--r--   1 kimi  admin     1522 Mar 23 14:34 MainKt$main$1$1$1$1$1$1.class
-rw-r--r--   1 kimi  admin     9533 Mar 23 14:34 MainKt$main$1$1$1$1$2$1.class
-rw-r--r--   1 kimi  admin    15698 Mar 23 14:34 MainKt$main$1$1$1$1.class
-rw-r--r--   1 kimi  admin     9692 Mar 23 14:34 MainKt$main$1$1.class
-rw-r--r--   1 kimi  admin     2157 Mar 23 14:34 MainKt$main$1.class
-rw-r--r--   1 kimi  admin     1292 Mar 23 14:34 MainKt.class
-rw-r--r--   1 kimi  admin   208635 Mar 23 14:34 animation-core-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   201364 Mar 23 14:34 animation-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    17536 Mar 23 14:34 annotations-13.0.jar
-rw-r--r--   1 kimi  admin    15414 Mar 23 14:34 desktop-jvm-0.2.0-build132.jar
drwxr-xr-x   4 kimi  admin      128 Mar 23 14:34 drawable/
-rw-r--r--   1 kimi  admin   822462 Mar 23 14:34 foundation-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   357370 Mar 23 14:34 foundation-layout-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin  1488745 Mar 23 14:34 kotlin-stdlib-1.4.20.jar
-rw-r--r--   1 kimi  admin   191485 Mar 23 14:34 kotlin-stdlib-common-1.4.20.jar
-rw-r--r--   1 kimi  admin    22355 Mar 23 14:34 kotlin-stdlib-jdk7-1.4.20.jar
-rw-r--r--   1 kimi  admin    16233 Mar 23 14:34 kotlin-stdlib-jdk8-1.4.20.jar
-rw-r--r--   1 kimi  admin   196243 Mar 23 14:34 kotlinx-collections-immutable-jvm-0.3.jar
-rw-r--r--   1 kimi  admin  1672388 Mar 23 14:34 kotlinx-coroutines-core-jvm-1.4.1.jar
-rw-r--r--   1 kimi  admin    10884 Mar 23 14:34 kotlinx-coroutines-swing-1.4.1.jar
-rw-r--r--   1 kimi  admin  1261868 Mar 23 14:34 material-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   674505 Mar 23 14:34 material-icons-core-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   584609 Mar 23 14:34 runtime-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    19435 Mar 23 14:34 runtime-dispatch-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    56960 Mar 23 14:34 runtime-saved-instance-state-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   248772 Mar 23 14:34 skiko-jvm-0.1.18.jar
-rw-r--r--   1 kimi  admin  8553451 Mar 23 14:34 skiko-jvm-runtime-macos-x64-0.1.18.jar
-rw-r--r--   1 kimi  admin  1378337 Mar 23 14:34 ui-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    38650 Mar 23 14:34 ui-geometry-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   304483 Mar 23 14:34 ui-graphics-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin   311880 Mar 23 14:34 ui-text-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    81156 Mar 23 14:34 ui-unit-desktop-0.2.0-build132.jar
-rw-r--r--   1 kimi  admin    11744 Mar 23 14:34 ui-util-desktop-0.2.0-build132.jar

It may seems to much, but, remember that this application embeds a Java Runtime and a lot of libraries that make your live easier developing in Kotlin.

In comparison to Electron.js + React.js I believe that the artefact size is similar, but there is a huge improvement in running a Kotlin / JVM app.


iBeacons – Let your Mac broadcasts

iBeacons are built on top of Core Bluetooth so I wondered whether it would be possible to use a MacBook running Mavericks to create an iBeacon transmitter. As iBeacon is just the name Apple gives for using Bluetooth 4.0 Advertising mode with a specific data format. So transmitting iBeacons should not be very difficult.
A Bluetooth 4.0 Advertising packet consist of the following information:

  • Preamble – 1 byte. Always 0xAA
  • Access Address: 4 bytes. Always 0x8E89BED6
  • CRC: 3 bytes checksum calculated over PDU
  • PDU (Protocol Data Unit): 39 bytes

The first three parts of the packet are handled by the Bluetooth Stack, so we should care about what information it is being sent in the Protocol Data Unit. Inside PDU there are some fields reserved for information, including Advertising channel, Manufacturer Specific Information, and so on. But the last 4 fields are of our interest. They are:

  1. Transmitter UUID (16 bytes)
  2. Major number (16 bit uint)
  3. Minor number (16 bit uint)
  4. Measured power (1 byte encoded as U2)

Major and Minor numbers help us differentiate between transmitters with the same UUID.
Matthew Robinson created an app for OSX called BeaconOSX that uses Mac’s Bluetooth 4.0 to transmit iBeacons, and a very simple class where it is easy to see how to encode information into the PDU and broadcast it.

- (NSDictionary *)beaconAdvertisement {

NSString *beaconKey = @”kCBAdvDataAppleBeaconKey”;
unsigned char advertisementBytes[21] = {0};
[self.proximityUUID getUUIDBytes:(unsigned char *)&advertisementBytes];
advertisementBytes[16] = (unsigned char)(self.major >> 8);
advertisementBytes[17] = (unsigned char)(self.major & 255);
advertisementBytes[18] = (unsigned char)(self.minor >> 8);
advertisementBytes[19] = (unsigned char)(self.minor & 255);
advertisementBytes[20] = self.measuredPower;
NSMutableData *advertisement = [NSMutableData dataWithBytes:advertisementBytes length:21];
return [NSDictionary dictionaryWithObject:advertisement forKey:beaconKey];

-(void)startAdvertising {

_manager = [[CBPeripheralManager alloc] initWithDelegate:self queue:nil];
NSDictionary* beaconAdvertisement = [self beaconAdvertisement]
[_manager startAdvertising:beaconAdvertisement];
More information about Bluetooth Advertising mode can be found at: